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Why Data Gets Missed?
• Human Error, Systematic Issues, Non-response or 

Refusal, Data Corruption, Survey Design or 
Sampling Issues, Conditional Data Collection

Missing data is a common challenge across various 
data types. 
• Most research focuses on the Missing 

Completely At Random (MCAR) missing 
mechanism. 

• This project explores underexamined 
mechanisms like Missing At Random (MAR) and 
Missing Not At Random (MNAR).

1. Introduction
Aim:  Developing Methods to Handle different types 
of missing mechanisms in mixed domain.

Objective 1: Investigating the effectiveness of 
existing methods in terms of handling different 
types of missing mechanisms and data types

Objective 2: Developing robust models for handling 
diverse types of missing data by investigating and 
enhancing existing methods to accommodate 
variations in missing mechanism generation 
techniques

Objective 3: Extending the novel methods to handle 
different types of missing mechanisms in categorical 
and heterogeneous domains.

Objective 4: Extending proposed methods to handle 
missing modalities in multimodal data.

2. Background

• Insufficient methods for handling MAR & MNAR 
missing data mechanisms.
• Current methods struggle with mixed data types 
(numerical and categorical).
• Current experiments rely heavily on synthetic 
scenarios.
• Need for more realistic and formulated missing 
data generation methods.

3. Research Gap

5. Methodology

6. Current Progress

Missing mechanism Ψ :
How and why data becomes missing.

Missing Mask 𝑴:
This mask is used to represent the location of 

missing data that occur in.
MCAR: 
Missingness is random and unrelated to the data.

𝑓 M Ψ) ∀ 𝑋, Ψ
MAR: 
Missingness is related to observed data.

𝑓 M 𝑋𝑜, Ψ) ∀ 𝑋𝑚, Ψ
MNAR: 
Missingness is related to the missing values 
themselves.

𝑓 M 𝑋𝑚, Ψ) ∀ 𝑋𝑜, Ψ

4. Research Aim

Table 1. Types of Missing Mechanisms 
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Chart 2. Taxonomy of Methods for Handling Missing Data
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Chart 4. Result from our paper, LHS: Average ranking of 
different imputation methods w.r.t. RMSE and correlation 
coefficient of imputed and true value along with 
performances in three downstream tasks for five different 
missing mechanisms.
RHS: Average RMSE at different missing parameters/rates. 
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