

Developing Robust Methods to Handle Missing Data in Real-world Applications Effectively

ECML PKDD 2024

PhD Forum-1605

Youran Zhou, Sunil Aryal, Mohamed Reda Bouadjenek School of Information Technology, Deakin University, Geelong, Victoria, Australia

1. Introduction

Why Data Gets Missed?

 Human Error, Systematic Issues, Non-response or Refusal, Data Corruption, Survey Design or Sampling Issues, Conditional Data Collection

Missing data is a common challenge across various data types.

- Most research focuses on the Missing **Completely At Random (MCAR) missing** mechanism.
- This project explores underexamined mechanisms like Missing At Random (MAR) and Missing Not At Random (MNAR).

2. Background

Missing mechanism Ψ :

How and why data becomes missing.

Missing Mask M:

This mask is used to represent the location of missing data that occur in.

MCAR:

Missingness is random and unrelated to the data. $f(M|\Psi) \forall X, \Psi$

MAR:

Missingness is related to observed data. $f(M|X^o, \Psi) \forall X^m, \Psi$

MNAR:

Missingness is related to the missing values themselves.

 $f(M|X^m, \Psi) \forall X^o, \Psi$

Table 1. Types of Missing Mechanisms

Gender	Salary							
Complete	e Dataset	MCAR	MAR	MNAR				
F	High	High	High	?				
F	High	?	?	?				
M	High	?	High	?				
F	High	High	?	?				
M	High	?	High	?				
M	High	High	High	5				
M	High	?	High	?				
M	Low	Low	Low	Low				
F	Low	?	?	Low				
M	Low	Low	Low	Low				
M	Low	?	Low	Low				
F	Low	Low	?	Low				
F	Low	Low	?	Low				
M	Low	?	Low	Low				

3. Research Gap

- Insufficient methods for handling MAR & MNAR missing data mechanisms.
- Current methods struggle with mixed data types (numerical and categorical).
- Current experiments rely heavily on synthetic scenarios.
- Need for more realistic and formulated missing data generation methods.

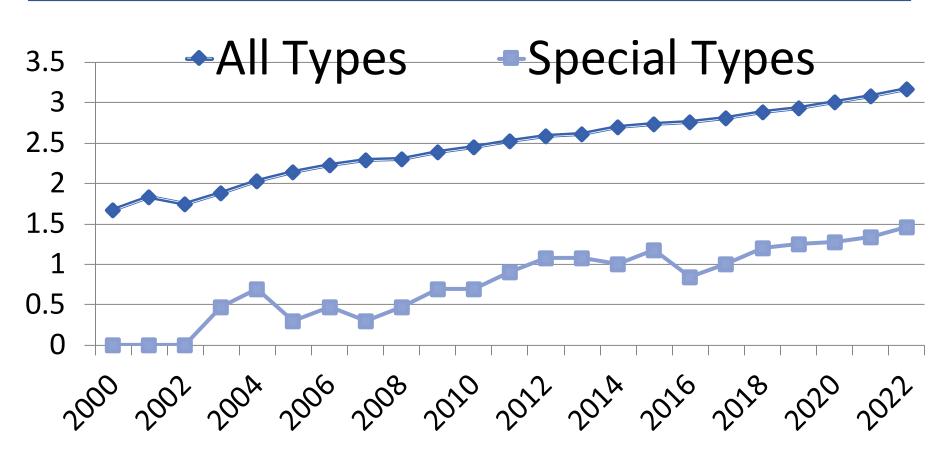


Chart 1. Number of Article occurs in Scopus database via Key words search (In log Scale)

4. Research Aim

Aim: Developing Methods to Handle different types of missing mechanisms in mixed domain.

Objective 1: Investigating the effectiveness of existing methods in terms of handling different types of missing mechanisms and data types

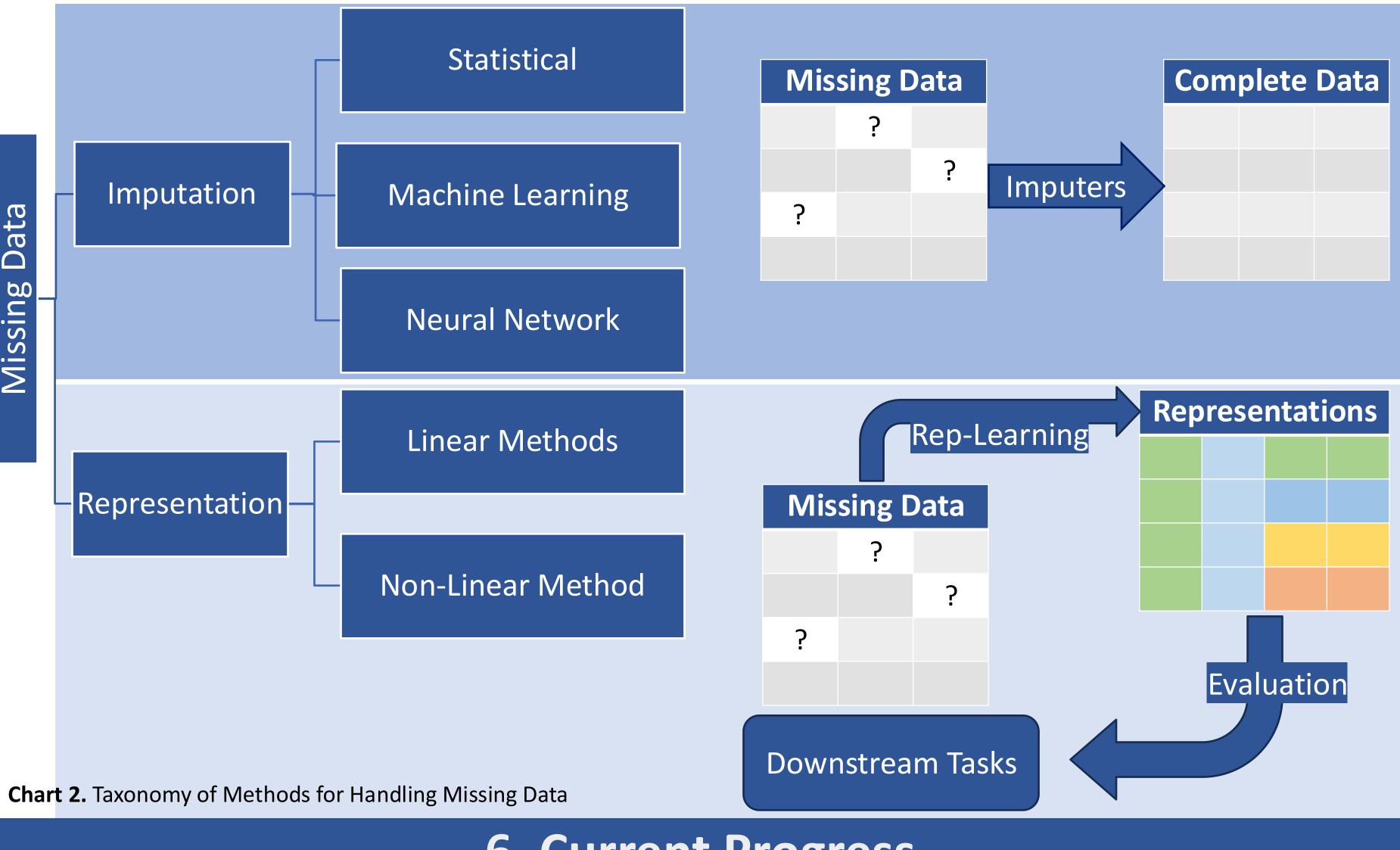
Objective 2: Developing robust models for handling diverse types of missing data by investigating and enhancing existing methods to accommodate variations in missing mechanism generation techniques

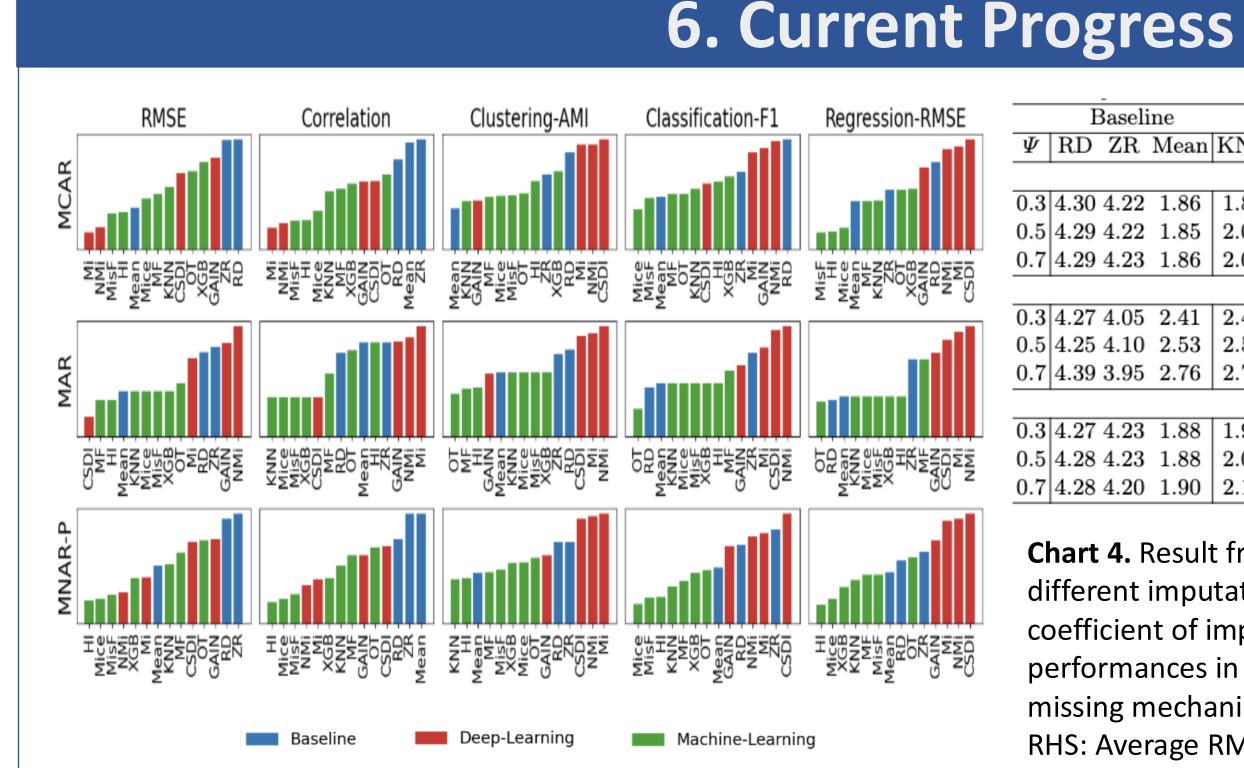
Objective 3: Extending the novel methods to handle different types of missing mechanisms in categorical and heterogeneous domains.

Objective 4: Extending proposed methods to handle missing modalities in multimodal data.

5. Methodology

- **Diffusion** Based **Imputation** Method
- Kernel Based Representation Learning Method with Heterogeneous Data
- Graph Neural Networks for Handling Special Missing Mechanisms in Multimodal Data





										_			_	
	Baseline			Machine Learning				Deep Learning						
Ψ	RD	ZR	Mean	KNN	MF	Mice	MisF	XGB	ОТ	HI	GAIN	Mi	NMi	CSDI
	MCAR													
0.3	4.30	4.22	1.86	1.86	1.96	1.59	1.60	4.16	2.16	1.66	2.34	1.62	1.60	2.22
0.5	4.29	4.22	1.85	2.02	1.99	2.31	1.80	3.98	2.20	1.83	2.64	1.69	1.70	2.24
0.7	4.29	4.23	1.86	2.09	2.02	3.08	2.04	3.39	2.20	2.06	3.12	1.81	1.92	2.28
	MAR													
0.3	4.27	4.05	2.41	2.41	2.21	2.41	2.41	2.41	2.60	2.36	4.08	3.17	74.30	2.13
0.5	4.25	4.10	2.53	2.53	2.38	2.53	2.53	2.53	2.59	2.35	4.08	3.31	78.99	2.11
0.7	4.39	3.95	2.76	2.76	2.44	2.76	2.76	2.76	2.70	2.48	4.12	3.12	81.68	2.40
	MNAR-L													
0.3	4.27	4.23	1.88	1.97	1.98	1.99	1.62	3.60	2.15	1.60	2.23	1.63	1.64	2.24

0.5 4.28 4.23 1.88 2.06 2.01 2.15 1.82 2.59 2.16 1.78 2.44 1.69 1.70 2.22

0.7 4.28 4.20 1.90 | 2.12 2.04 3.24 2.05 2.59 2.19 2.01 | 2.89 **1.81** 1.86 3.04

Chart 4. Result from our paper, LHS: Average ranking of different imputation methods w.r.t. RMSE and correlation coefficient of imputed and true value along with performances in three downstream tasks for five different missing mechanisms.

RHS: Average RMSE at different missing parameters/rates.

Contact

Youran Zhou **Deakin University** Email: echo.zhou@deakin.edu.au LinkedIn: www.linkedin.com/in/youran-zhou

Stay in Touch: Scan to Connect on LinkedIn

Discover More: Scan to Read the Full Paper

References

- Biessmann, F., Rukat, T., Schmidt, P., Naidu, P., Schelter, S., Taptunov, A., Lange, D., Salinas, D.: Datawig: Missing value imputation for tables. J. Mach. Learn. Res. 20(175), 1–6 (2019)
- Enders, C.K.: Applied missing data analysis. Guilford Publications (2022) Ipsen, N.B., Mattei, P.A., Frellsen, J.: not-miwae: Deep generative modelling with missing not at random data. arXiv preprint arXiv:2006.12871 (2020) Mattei, P.A., Frellsen, J.: Miwae: Deep generative modelling and imputation of incomplete data sets. In: International conference on machine learning. pp. 4413–4423. PMLR (2019)
- Nazabal, A., Olmos, P.M., Ghahramani, Z., Valera, I.: Handling incomplete heterogeneous data using vaes. Pattern Recognition 107, 107501 (2020)
- Zheng, S., Charoenphakdee, N.: Diffusion models for missing value imputation in tabular data (2023) Zhou, Y., Aryal, S., Bouadjenek, M.R.: Review for handling missing data with special missing mechanism (2024)
- Zhou, Y., Bouadjenek, M. R.& Aryal, S. (2024). Missing Data Imputation: Do Advanced ML/DL Techniques Outperform Traditional Approaches? Manuscript accepted for publication in the proceedings of ECML PKDD 2024.