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Introduction:
Definition and Impact of Missing Data

What is Missing data?
• Absence of values within a dataset

• Occurs in any types of data

How does Missing Data Occur?
• Data Entry, Transformation & storage Error

• Privacy Concern, Non-Response

Impact of Missing Data
• Preserve Data Quality

• Ensure Reliability of Analyses

• Avoid Biases in Results
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Missing Rate:

• Proportion of data that is missing from a dataset

Missing Mechanism :

• Salary values are randomly missing due to impute error (MCAR)

• Salary values are missing for female employees (MAR)

• Salary values are missing for high-earning employees  (MNAR)
Exam

Gender
Salary

Full MCAR MAR MNAR

F High High High ?

F High ? ? ?

M High ? High ?

F High High ? ?

M High High High ?

M Low Low Low Low

F Low ? ? Low

M Low Low Low Low

M Low ? Low Low

F Low Low ? Low

Introduction:
Factors Influencing the Missing Data
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Introduction:
Solutions to dealing with Missing Data
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Imputation Methods

• Statistical-based Methods

• Machine Learning-based (ML) Methods

• Deep Learning-based (DL) Methods

Evaluation Method

• Distance Similarity

• Root Mean Square Error (RMSE)

• Mean Absolute Error (MAE)

• Mean Squared Error (MSE)

• Distributional Similarity

• Kullback-Leibler (KL) Divergence

• Wasserstein Distance

• Impact on Downstream Tasks
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Challenges

• Overlooked Mechanisms in Existing Methods
• Limited focus on MAR and MNAR data imputation in current approaches.

• Inadequate Evaluation Metrics
• Existing metrics like RMSE and MAE fail to capture the real-world utility, particularly in downstream 

tasks.

• Experimental Limitations
• Inconsistent settings and lack of a comprehensive approach in comparing imputation methods across 

various missing data scenarios.
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Research Focus

• Comprehensive Evaluation
• Systematically evaluate statistical-based, ML-based, and DL-based imputation methods on 

tabular data, considering different missing mechanisms (MCAR, MAR, MNAR) and 

varying levels of missing data.

• Practical Application
• Focus on assessing how these methods perform in real-world scenarios, particularly in 

downstream tasks like regression, classification, and clustering.

• Refined Metrics Future Directions
• Offer insights into future directions for refining the evaluation metrics of the data 

imputation problem, aiming to improve the practical application of imputed data.
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Experiments Setting:
Dataset Selection

• Dataset 

• 10 from the UCI Machine Learning Repository

• Features are all numerical fields

• Applied MinMaxScaler to scale features within the range [0, 1]

• Various tasks including Regression, Classification, and Clustering

• Clustering methods also applied to datasets typically used for 

classification
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Experiments Setting:
Missing Data Generation

• MCAR

• Random

• MAR

• Logistic

• Focused MNAR

• Percentile Rule

• Logistic

• Diffused MNAR

• Diffused

• Missing Rate

• Ψ: 0.3, 0.5, 0.7
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Experiments Setting:
Imputation Models (14 Methods)

Model Name Type Subtype

Random Imputer (RD)

Statistical Based BaselineZero Imputer (ZR)

Mean Imputer (MEAN)

K-NN Imputer (2001) (KNN)

Machine Learning Based

-

Matrix Factorization (2001) (MF) -

MICE (2011) (MICE) Regression Based

XGBImputer (2014) (XGB) Tree Based

MissForest (2012) (MisF) Tree Based

Optimal Transport (2020) (OT) Enhanced Machine Learning

Hyper Imputer (2022) (HI) Enhanced Machine Learning

GAIN (2018) (GAIN)

Deep Learning Based

GAN Based

MiWAE (2018) (Mi) VAE Based

Not-MiWAE (2020) (NMi) VAE Based

Tab-CSDI (2022) (CSDI) Diffusion Based 
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Experiments Setting:
Evaluation Process

• Quantitative Metrics

• RMSE/MAE

• Pearson Correlation (between imputed value and ground truth) 

• Downstream Task 

• Regression - RMSE

• Classification – F1

• Clustering - Adjusted Mutual Information (AMI)
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Results and Discussion
Baseline Methods

Average ranking of different imputation methods

Baseline Methods

Quantitative Results: 

• Not performing well.

MNAR-D Performance:

• Shows promising (Mean 

Imputer)
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Results and Discussion
Baseline Methods

ML-Based Methods:

Quantitative & Downstream: 

• Generally performs well in 

both, showing balanced 

effectiveness.

Average ranking of different imputation methods
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Results and Discussion
Baseline Methods

DL-Based Methods:

Quantitative Analysis: 

• Generally, excels in 

quantitative analysis, 

yielding strong RMSE and 

MAE scores.

Downstream Tasks: 

• Fails to perform effectively 

in downstream tasks.

Average ranking of different imputation methods
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Conclusion

Key Findings:

• Performance Across Missing Mechanisms:

• Imputation methods show strong performance under MCAR but face 

challenges with MAR and MNAR due to their complexity.

• Imputation Model Insights:

• Statistical Methods: Effective, especially in complex missing 

scenarios.

• ML-Based Methods: Robust across both quantitative metrics and 

downstream tasks.

• DL-Based Methods: While promising in qualitative analysis, often fail 

in downstream tasks, likely due to the limited size of tabular datasets.
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Conclusion

Future Directions:

• Broader Evaluation Metrics: 

• Beyond RMSE, explore a wider set of metrics to better assess 

imputation quality across various analytical tasks.

• Focus on MAR and MNAR:

• Develop techniques tailored to handle MAR and MNAR 

mechanisms, as they are more prevalent in real-world scenarios.

• Handling Diverse Data Types:

• Extend research to address missing data in discrete and 

categorical forms, beyond the current focus on numeric data.
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