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Abstract

Incomplete data is a pervasive challenge across a wide range of data
types, including tabular, sensor, time-series, image, and textual data.
Its presence stems from various real-world factors and gives rise
to different missingness mechanisms. While much of the existing
research focuses on the Missing Completely At Random (MCAR) as-
sumption, the more complex and realistic mechanisms—Missing At
Random (MAR) and Missing Not At Random (MNAR)—remain rela-
tively underexplored despite their prevalence and impact. This PhD
project aims to systematically investigate the challenges posed by
diverse Incomplete data mechanisms and to develop robust machine
learning methods that can perform reliably across MCAR, MAR, and
MNAR scenarios. The research spans multiple data modalities and
focuses on improving both the theoretical understanding and practi-
cal handling of incomplete data. By addressing mechanism-specific
imputation challenges and proposing broadly applicable solutions,
this work contributes to building more resilient and trustworthy
data-driven systems in real-world settings.
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1 Problem

Incomplete data, where certain entries or attributes are missing
from a dataset, is a pervasive and persistent challenge in real-world
machine learning. It arises across the entire data lifecycle—from col-
lection and transmission to storage and labeling. Examples include
skipped survey responses, sensor failures in IoT systems, occluded
regions in medical imaging, and truncated logs in time-series data.
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These incomplete observations can severely compromise the reli-
ability of downstream analysis, prediction, and decision-making.
Although traditionally studied in the context of structured tabular
data, incompleteness is also common in text, image, and multimodal
datasets. In natural language, named entities may be missing due to
extraction errors. In vision, region-level annotations may be absent,
or objects may be partially visible. Despite the modality, the pres-
ence of incomplete data challenges model robustness and general-
izability across a broad range of Al applications. Three intertwined
factors make handling incomplete data particularly difficult: Miss-
ing Ratio: The proportion of missing entries significantly impacts
the effectiveness of imputation and learning algorithms. Missing
Mechanism [8, 20]: The missingness mechanism—Missing Com-
pletely At Random (MCAR), Missing At Random (MAR), or Missing
Not At Random (MNAR)—affects what information is recoverable,
and under which assumptions. Data Type: Categorical, numerical,
heterogeneous and time series attributes require fundamentally dif-
ferent strategies for recovery and modeling. The statistical theory of
missingness mechanisms was originally developed for tabular data,
but its conceptual foundations extend naturally to other domains.
For instance, whether a label is absent in an image due to random
omission, dependency on visible regions, or systematic occlusion
mirrors MCAR, MAR, and MNAR respectively. The toy dataset in
Table 1 illustrates how different mechanisms yield different missing
entries, even within the same observed data.

Although it is unrealistic to expect a single algorithm to perform
reliably under all forms of data incompleteness, effective manage-
ment of incomplete data through well-designed modelling strate-
gies is essential for trustworthy machine learning. This PhD project
aims to make machine learning models more robust to incomplete
data by systematically exploring three critical dimensions: missing-
ness mechanisms (MCAR, MAR, MNAR), data types (with a focus
on tabular data and evaluations on heterogeneous and time-series
datasets), and modelling strategies. We study both traditional and
generative approaches across two methodological paradigms: di-
rect imputation, where missing values are explicitly filled using
statistical or generative models, and representation learning, where
incomplete inputs are encoded directly into robust latent features.
The goal is to understand the strengths and limitations of each ap-
proach, develop new hybrid methods, and offer practical tools that
integrate easily into modern ML pipelines. While our primary focus
is on tabular data, the proposed methodologies are designed to be
extensible to other modalities such as images and text, contributing
toward more reliable, generalizable, and mechanism-aware learning
in the presence of incomplete data.


https://orcid.org/0009-0001-6831-4634
https://doi.org/10.1145/3746252.3761662
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3746252.3761662

CIKM °25, November 10-14, 2025, Seoul, Republic of Korea

2 State-of-the-Art

Research on handling incomplete data spans classical statistical tech-
niques and modern machine learning. Existing methods are typi-
cally grouped into: (i) explicit imputation, where missing values are
filled before learning, and (ii) representation-based learning, which
encodes incomplete inputs directly. Explicit Imputation Meth-
ods: Classical methods such as mean/mode substitution, k-nearest
neighbors (KNN) [14], multiple imputation via chained equations
(MICE) [24], the expectation-maximization (EM) algorithm [3], ma-
trix factorization [13], and MissForest [21] are simple and effective
under low missingness, but often distort data distributions under
structured mechanisms (e.g., MAR or MNAR). Generative mod-
els—including VAEs [4, 10, 12, 17], GAN-based methods [1, 5, 25],
and diffusion-based approaches [18, 23, 26]—learn to model com-
plete data distributions and generate plausible imputations. These
methods show promise under MAR and MNAR, yet typically as-
sume continuous numerical inputs, demand large datasets, and are
sensitive to hyperparameters. Empirical evaluations [15, 22, 29]
suggest these models underperform on small-scale tabular data,
especially when feature types are mixed. Representation-Based
Learning: Representation-based approaches avoid direct imputa-
tion by encoding incomplete inputs into latent embeddings. Exam-
ples include masked autoencoders [2], GNNs for structured data [11,
27], and cross-modal architectures for multimodal or temporal con-
texts [7]. While effective in domains like vision and sensor data,
these models often struggle with tabular data that is heterogeneous,
sparsely observed, or sample-limited [6, 19]. They may also lack
interpretability or adaptability to downstream tasks. Mechanism-
Aware vs. Agnostic Learning: Rubin’s taxonomy [9, 20] distin-
guishes three missingness mechanisms: MCAR, MAR, and MNAR.
Mechanism-aware methods attempt to explicitly model the miss-
ingness process, e.g., through likelihoods, conditional masking, or
two-stage learning [4, 12, 16]. In contrast, agnostic approaches aim
for robustness under unknown or mixed patterns, typically through
mechanism-agnostic training or regularization [15, 22].

3 Motivation and Approach

Incomplete data—where observations are partially missing across
features or modalities—is a pervasive challenge in real-world ma-
chine learning. It arises throughout the data lifecycle, from user
non-response and sensor malfunction to truncation in logs and
annotation gaps. While traditionally studied in tabular datasets,
incompleteness also affects text, image, and time-series data, threat-
ening the reliability of downstream analysis and decision-making.
Despite decades of work on imputation and learning with miss-
ing values, three key challenges persist. First, the missing ratio
(i.e., proportion of missing entries) significantly influences learning
robustness. Second, missingness patterns governed by different
mechanisms—Missing Completely At Random (MCAR), Missing
At Random (MAR), and Missing Not At Random (MNAR)—require
distinct modeling strategies, yet the true mechanism is often un-
observable. Third, data heterogeneity, including categorical and
mixed-type features, further complicates inference and similarity es-
timation. Existing approaches frequently assume low missing rates,
numerical data, or benign missingness mechanisms (e.g., MCAR),
limiting their applicability in real-world scenarios. Moreover, much
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Figure 1: Article counts from Scopus keyword searches
(2000-2025) for general vs. special types of incomplete data.

prior work focuses on imputing missing values, rather than directly
learning from incomplete data. As shown in Figure 1, research ex-
plicitly targeting MAR/MNAR (Special) settings remains relatively
underrepresented.

Complete Data || MCAR MAR MNAR
1Q [ Rating Rating | Rating | Rating
78 9 ? ? 9
84 13 13 ? 13
85 8 8 ?

92 9 9 9

96 7 ? 7 ?
105 11 11 11 11
134 12 ? 12 12

Table 1: Example of different missingness mechanisms.
MCAR: randomly missing. MAR: dependent on observed
IQ. MNAR: dependent on unobserved Rating,.

To address the challenges outlined above, this PhD project is
structured around the following key objectives, each targeting a
specific gap in current approaches to learning with incomplete data.
The following objectives guide this work:

(1) To analyze the robustness limitations of existing models
under incomplete data for MAR and MNAR patterns, by
identifying failure modes across diverse data types.

(2) To develop modeling frameworks that learn directly from
incomplete inputs, using generative, kernel-based machine
learning methods for reconstruction.

(3) To build a standardized toolkit for simulating, detecting, and
benchmarking missingness mechanisms, supporting repro-
ducible and mechanism evaluation for heterogeneous data.

(4) To extend these methods to heterogeneous data, establishing
principled approaches that maintain statistical integrity in
non-numeric settings.

(5) To unify data-level and modality-level incompleteness in
multimodal datasets, enabling robust learning when views
are missing in time-series, or multiple tabular datasets.

4 Methodology

To accomplish our research objectives, we employ a multi-faceted
methodological framework that combines empirical benchmarking,
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generative modeling, kernel-based representation learning, and
tool development.

Objective 1: Investigating and Benchmarking Existing Meth-
ods. We begin by conducting a structured literature review using
keyword-based searches across platforms such as Google Scholar
and Scopus, categorizing prior work by data modality, experimental
design, and missingness assumptions. Building on this foundation,
we perform systematic evaluations of representative methods across
diverse real-world (e.g., UCI Repository) and synthetic datasets. To
ensure controlled comparison, we simulate incomplete data un-
der a wide range of settings—varying missingness mechanisms
(MCAR, MAR, MNAR), missing rates, and data types. This empir-
ical analysis allows us to identify which classes of methods (e.g.,
imputation-based vs. representation-based) demonstrate robustness
under realistic and challenging incomplete scenarios.

Objective 2: Developing Robust Models for Incomplete Data.
We explore two complementary modeling paradigms. First, we in-
vestigate generative models for imputation. While existing methods
such as MIWAE [12], Not-MIWAE [4], and diffusion-based mod-
els [26] rely on binary mask arrays to encode missingness, such
representations often fail to capture global structural dependencies.
Inspired by recent work [10], we propose using graph-based repre-
sentations to model feature interdependencies and guide the impu-
tation process, thereby enhancing robustness in MAR and MNAR
settings. Second, we develop representation learning approaches
that embed incomplete data directly for downstream tasks (e.g., clas-
sification, clustering, regression), avoiding explicit imputation. We
employ data-dependent kernel methods to measure similarity from
partially observed data. These kernels natively support categorical
and discrete attributes, and—by operating directly on incomplete
inputs—help reduce risks of information leakage.

Objective 3: Designing a Toolkit for Missingness Simulation
and Diagnosis. To support reproducible and mechanism-aware
experimentation, we construct a standardized Python toolkit for
simulating, detecting, and benchmarking missingness mechanisms.
Based on statistical literature and current practice, we formalize and
unify common simulation strategies, extending them to ordinal and
discrete variables—an underexplored area in existing libraries. We
also integrate diagnostic tools such as Little’s MCAR test and pair-
wise dependence checks for mechanism identification. This toolkit
serves as a research infrastructure for the community, supporting
evaluations in heterogeneous and multimodal tabular data.
Objective 4: Extending to Categorical and Heterogeneous
Data. We further extend our modeling techniques to support het-
erogeneous tabular data encompassing categorical, ordinal, and
continuous variables. For kernel-based similarity learning, we adopt
a maximum uncertainty principle—representing missing categorical
values via uniform distributions over all possible categories—thereby
avoiding biased imputations and preserving uncertainty. This re-
sults in a type-aware and uncertainty-aware similarity estimation
framework suitable for mixed data. For graph-based models, we
propose a lightweight encoding scheme that avoids the overhead
of one-hot encodings, allowing the graph structure to capture se-
mantic relationships more effectively and improving generalization
across diverse data types.
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Figure 2: Preliminary results for MissDDIM: average RMSE
under MCAR across five benchmark datasets.

5 Preliminary Results

Literature Review and Empirical Benchmarking: We surveyed
incomplete data modeling techniques with emphasis on missing-
ness mechanisms (MCAR, MAR, MNAR) [28], identifying gaps
such as the absence of standardized missingness generation and
limited support for categorical or heterogeneous data. Building
on this, we benchmarked ten real-world datasets under controlled
missingness [29]. Results show that many deep learning imputers
achieve low reconstruction error (e.g., RMSE) but degrade on down-
stream tasks, revealing a mismatch between imputation fidelity
and task utility. Framework Contributions: We developed three
complementary modeling frameworks to address incomplete het-
erogeneous data. The first, HI-PMK (Heterogeneous Incomplete
Probability Mass Kernel) [32], is a data-dependent kernel method
that avoids imputation by directly computing similarity under un-
certainty. It supports numerical, ordinal, and categorical data types,
and introduces a conservative maximum uncertainty strategy for
missing values. This work has been accepted at ECAI 2025. The
second, MissDDIM [30], is a diffusion-based generative model
that captures complex data distributions and produces consistent
imputations across different missingness mechanisms. This work
has been accepted as a short paper at CIKM 2025. Figure 2 illus-
trates its performance under MCAR, where MissDDIM achieves
lower average RMSE across five benchmark datasets compared to
classical methods. The third, IVGAE (Imputation via Variational
Graph Autoencoder), integrates a graph-based representation with
a dual-decoder architecture and Transformer-style heterogeneous
embeddings to improve robustness under structured missingness.
This work is currently under review. Toolkit Development: We
have developed MissMecha [31], an open-source Python package
for simulating, diagnosing, and benchmarking missingness mech-
anisms in tabular data. MissMecha supports MCAR, MAR, and
MNAR mechanisms, and extends simulation capabilities to categor-
ical and ordinal variables—addressing a key limitation in existing
tools. It also includes statistical diagnostics such as Little’s MCAR
test and pairwise dependence analysis. A demo paper describing
MissMecha has been submitted to the CIKM 2025 Demo Track. The
toolkit is publicly available on GitHub and PyPI, with documenta-
tion and usage examples at: https://echoid.github.io/MissMecha/.
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6 Conclusion and Future Work

This proposal addresses the fundamental challenge of learning from
Incomplete data—a ubiquitous issue in real-world machine learning.
We have systematically characterized the different mechanisms of
incompleteness (MCAR, MAR, MNAR) and highlighted their the-
oretical implications and practical obstacles across diverse data
types. Our preliminary studies, combining a literature review and
empirical benchmarking, reveal that many existing methods lack
robustness under structured missingness and often fail to general-
ize across heterogeneous feature types. To tackle these challenges,
we propose a multi-faceted research agenda that includes: (1) de-
veloping generative models enhanced by graph-based structural
representations, (2) designing kernel-based approaches that directly
embed incomplete data without requiring imputation, and (3) releas-
ing a standardized open-source toolkit for missingness simulation
and diagnosis. Collectively, these contributions aim to advance
both the theoretical foundation and the practical tools available for
handling Incomplete data. While this project primarily focuses on
incomplete tabular data, a natural next step is to extend our frame-
work to more complex multimodal datasets, where missingness may
occur at both feature- and modality-level. Real-world applications,
such as healthcare records, sensor networks, or human activity
data, often contain missing entire views (e.g., missing time series,
absent image scans, or unrecorded textual notes). Future work will
explore adapting our mechanism-aware and agnostic strategies to
such scenarios, emphasizing flexible architectures that can accom-
modate modality-specific patterns and align heterogeneous inputs
for robust learning under incomplete observations.
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