Impute Module¶
This module provides baseline imputers to support quick experimentation or evaluation of imputation strategies.
The main tool is SimpleSmartImputer
, which detects column types and fills missing values accordingly.
Function Overview¶
A simple imputer for both numerical and categorical variables. |
Module Reference¶
SimpleSmartImputer
¶
This simple yet adaptive imputer chooses different strategies based on column types: - Numerical columns are imputed using the mean - Categorical columns are imputed using the mode
It supports optional control over column type detection and verbosity.
- class missmecha.impute.SimpleSmartImputer(cat_cols=None, verbose=True)[source]¶
Bases:
object
A simple imputer for both numerical and categorical variables.
This class automatically detects or accepts user-specified column types and fills missing values using mean (for numerical) or mode (for categorical) strategies.
The interface supports scikit-learn-style methods: fit, transform, and fit_transform.
- Parameters:
cat_cols (list of str, optional) – A list of column names to be treated as categorical. If None, types are inferred automatically.
verbose (bool, default=True) – Whether to print out the imputation summary during fit.
Examples
>>> from missmecha.impute import SimpleSmartImputer >>> df = pd.DataFrame({'age': [25, np.nan, 30], 'gender': ['M', 'F', np.nan]}) >>> imputer = SimpleSmartImputer() >>> df_imputed = imputer.fit_transform(df)
- fit(df)[source]¶
Fit the imputer on the provided DataFrame.
This method determines the fill values for each column based on the strategy: - Numerical columns: mean - Categorical columns: mode
- Parameters:
df (pandas.DataFrame) – Input data to analyze and compute fill values from.
- Returns:
self – The fitted instance with fill_values set.
- Return type: